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NOTATION

P Power input

T Thrust

Q Tangential force

n Number of blades

D -2R Diameter (of rotor and shroud)

I Length of shroud

h - 1/2R Length-diamoter ratio of shroud

th Hub radius

a Cylindrical coordinates

z = ni
/ Nondimenrional cylindrical cookdi, tesJ

1/2

V0  Velocity of approach

W Angular velocity

A 0/W17 Advance coefficient

t, Circulation

G- r Nondimensional circulation
V0 D

tea  Axial component of induced velocity

W, Radial component or induced velocity

W1 Tangential component of induced
velocity

e Sink density per unit ares\

a Cavitation number

CD Drag coefficient

CL Lift coefficient
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C D/CL Druag-h I ratio

CT= 2-ZT Thrust coefficient

Cp e( 2 r)r 3 Power coefficient

2 h 0

F

K

PA Symbols for functions which are
defined in the paper

S
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ABSTRACT

The flow and the forces which are generated by a propulsion system
consisting of rotor, shroud and guide vanes are analyzed. For this purpose,
the components of the system are replaced by proper singularities. From the
component velocity fields and from the characteristic constants of the singu-

larities, the interaction forces between the components are determined from
which the net forces of the unit follow. The deduced expressions for thrust
and power input taken together with the pressure increase at the rotor, which

arises from the action of the shroud, and with the condition of cavitation free
flow form the basis for a method of design of a propulsion unit. To apply this
method, knowledge of both lift versus angle of attack curves and of pressire

distribution curves of sections in cascade is necessary.
Comparison of experimental results for the efficiency and for the inter-

action force between rotor and shroud are in fair agreement with the respective
analytical expressions taking into account the lack of knowledge relative to
the drag of the shroud.

1. INTRODUCTION

Recent interest by the U.S. Navy in the possible application of shrouded propellers
to various types of naval vessels for the purpose of delaying cavitation and propeller noise

has led to a study of the a" ilable theory of such a propulsion system. It was found desir.

able to consider further the theoretical aspects of this problem which has resulted in the de-
velopment ftf the theory represented here. It is planned to supplement this work with a pre-
sentation of the theory as applied to a specific design problem.

The forces on the components of the system and the design data are to be determined
for a given net thrust of & propulsion system consisting uf rotor, shroud, and guide vanes
(the latter two components being stationary) and for given quantities of speed of advance,

number of revolutions, rotor diameter, and pressure at the rotor (duo to the action of the
shroud). For this problem, it is necessary to ascertain the mutual interaction between the

components of the system which follows when these components, with respe , to thair effect

on the flow, are replaced by propc. singularities. In order tG deduce the component forces on

the basis o; such a theory, it is necessary to know the component velocity fields. This re-
quires certain approximations which will ba mentioned first i. connection with the singulari-
ties.

The shroud is considered to he an annular-shaped thin hydrofoil; all the sectiong,

determined by a meridian cut, are supposed to be of equal shape. This axisymmetric.! h)dro-

fail is replaced by a row of adjacent circular vortices. Furthermore, it if assumed that the

shroud is a circular cylinder with a diameter equal to that of the rotor. This approximation

CNFW TIAL
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holds if both the ordinates of the camber lina of the hydrofoil section as measured from the

cylinder and the square of the slope of the ordi-ates are small. Then, the circular vortices

can be arranged on the surface of the c)linder, i, e., their diameter is constant and equals

that of the rotor.

The gap between rotor and shroud is assumed to be very small and the length of the

shroud to be sufficiently great so that a radial flow around the tips of the rotor blades and

the equalizinu of pressure which arises from such radial flow are prevented. Then a circu-

lation which is independent of the radius is pousiblo at the rotor for which free vortices are

not present. When the blades are replaced by lifting lines, the vortex system of the rotor

then consists merely of the liftin3 lines and of a hub votex of the combined circulation of

that of the lifting lines. Further, discontinuities of the velocity components occur within

the boundary of the rear part of the jet. The introduction of hbe(cal vortex lines within the

boundary would be necessary to account for these discontinuities.

With respect to the velocity field of the rotor, the influence of a finite number of blades

is neglected; by this simplification, the field of the absolute velocity becomes independent

of time. It is shown later that this assumption may be justified with thu- number of blades in

practical application. Then the discontiuuity cf the velocity within the bu .ndary of the roar

jet is equivalent to a vortex sheet consisting of helical vortex lines. It is 7 -,1 known that

such a sheet can be resolved into two sheets, one consisting of straight vortse ices which

are parallel to the axis and the other one of ring vo:tices which are perpendiculmr to ;ha axis.

The first sheet produces only tangential velocity components, as follows frwu Abo law

of Biot-Savart. Within the inside fluid, i.e., within the slipstream, the velocity from 01't

sheet equals zero (as follows from Stokes' law). The tangentitl velocity components pi.

duced from this sheet on the shroud (which is within the outside fluid) are without interest

for the interaction between rotor and shroud. Hcce, the sheet consisting of straight vortex

lines need not be considered in the following.

The sheet of ring vortices can be replaced by singularities on the propeller disk. It

is well known that the velocity potential of a single closed vortex equals that of a uniform
distribution of dipoles over any surface bounded by the vortex, the axes of the dipoes being

perpendicular to the surface (e.g., see Lamb, Hyckodynamics, Art. 150, 161, and 102). The

singularities on the disk which correspond to a row of closely adjacent ring vortices behind

the disk follow when integrating the potential of a single ring vortex from a = 0 (at the rotor

disk) to infinity downstream, as given in Lamb, Art. 161 (13). The result for the inflow is

that the potential of this row of ring vortices equals that of a uniform sink distribution over

the disk. The sam result has been obtined by Dickman in a different way, viz., frown

Euler's differential equations. 1

Refernces e listed on pig* 43.

RurilA MA
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In the following discussion, the rotor inflow is b!-qod on the flow of a sink disk by
which numerical calculations bocone simpler than from the wlocity field of the cylindrical

vortex sheet at the boundary of the roar jot, The force on the rotor,however, is not calcu-

lated from the forces which act on the sinks but from those on the lifting vortices, permitting

the influence of a finite number of blades on the force to be approximated.
Analagously, the guide vanes aro replaced by lifting lines in order to determine the

f'orces. The total circulation of those lifting lines is taken equal to that of the rotor in

which case, with a finite number of blades, the average of the tangential velocity component

within the slipstream equals zero at the design advance coefficient. With respect to the

influence of the guide vanes on the axial and radial inflow, which depends on the thrunt
loading, rotor and vanes are considered as a unit which causes the sum of the component

thrusts. Correspondingly, the strength of the sinks at the rotor disk is determined from the

sum of the thrusts of rotor and vanes. This amounta to a neglect of both the finite distance
between rotor and vanes and of the variation of the circulation with time which arises from
the interference between rotor and vanes wit, a finite number of blades.

The vanes are considered to be situated behind the rotor. In this position, the vanes
cause a thrust which is in the same direction as the thrust generated by the rotor. On the

other band, due to the pressure increase which arises from the positive thrust, the losses

at the vanes are greater than when located in front of the rotor. In this latter arrangement,

a negative thrust arises at the vanes which leads to a pressure drop and, therefore, to small

losses. At the same time, the necessary lift coefficients at the aotor are smaller in the
latter arrangement because of a greater relative velocity; this advantage with respect to the

onset of cavitation may be offtet by the smaller cavitation numbers of the sections of the

rotor.

The termination of the rotor shaft requires singularities which are chosen so that
the meridian cut of the shaft becomes a streamline 3f the combined flow. If this condition

is not satisfied, the continuity equation is violated. Approximately, however, a single sink
on the axis may be sufficient to account for the effect of the shaft.

When the components of the system are replaced by the afore-mentioned singularities

within a uniform velocity field, which is identical with the apeed of advance, the force act-
ing on any one singularity follows from a general rule (Lagally). For the problem under

consideration, the main consequence of this general rule is that the interference velocity

on each of the singularities arising from the other singularities present does not lead to a

resultant force but to Interaction forces between the singularities. From this, the reaction

between shroud and rotor, e.g., is determined either from the singularities of the shroud and

the velocity induced at the shroud from the rotor or from the singularities of the rotor and

the velocity induced at the rotor from the shroud. The force follows from the product of the

characteristic constant of the singularity (e or I') times the velocity. !n the case of a sink

singularity, the direction of the force equals that of the velocity; in the case of a vortex,

CONFIDENTIAL
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the force is normal to the velocity and coincides with the vector product (v x curl V). This
latter special case of the general rule is the well-known law of Futta-Joukowsky.

2. THE VELOCITY FIELDS

Z; THE VELOCITY FIELD OF THE SHROUD

The velocity field of the shroud is determ;ned from its chordwise circulation distribu-
tion; two casee can be considered in this respect, viz., the shape of the sht_-qd is given and
the circulation distribution is to bo determined or vice versa. In both of these cises, the

unknown quantity follows from the boundary condition of the flow, viz., that the section of
the shroud is a streamline of the relativa flow at the shroud. This flow results from the

undisturbed flow, frcm the induction of rotor, guide vanes, and shaft sink, and from the self-

induction of the shroud.
The problem of determining the circulation distribution, neglecting the thickness of

the shroud section and z.onsidering the camber liue, given, leads to a (omplicated integral
s ua%;, i' which Oickmann gives an approximate F-Aution. 2 Howevo, 'is solution be-
w.n,; very taborious when A - 1/2R Z 1, A being the ratio of shroud leng' to its diameter.

This case cannot be excluded from consideration. Therefore, it is 09tirable to avoid begin-
ning with a given camber line and to begin instead with a ,iveL circulation distribution

which necessitates the determination of the camber line alEv . ws such that the circulation
distribution is realized, i.e., that the afore-mentioned boundary condition of the resultant

flow is satisfied. Proceeding in this way avoids the integral equation, and the camber line

follows from a first-order differential equation.

The circulation function over the chord :ength of the shroud is chooen to be a half
ellipse in order to avoid peaks of negative pressure. This circt,* .tion function requires

that the forward stagnation point be situated at the leading edge of the camber line (shock-
free condition). It is well known that this condition is satisfied in the case of two-dimensional

flow at a flat wing with a parabolic camber line at zero angle of attack. The camber line and
the geometric angle of attack of a ring-shaped wing which satisfy the shock-free condition
are not yet known. Both of those unknowns can be determined after the component velocity

fields have been established.

For the velocity field of the shroud, a cylindrical sheet of adjacent circular vortices
is considered corresponding to the afore-mentiond ussumptions. The stream function of a
single circular vurtex of radius R, width da*, and circulation (yda') is, in cylindrical coor-

dinates, r, a, and o, represented by (e.g., see Lamb, Art. 161)

d1P- (yda')(r) k(2D-K) with D=

CONFIDENTiAL
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K' and E are the complete elliptic integrals of the first and second kind, respectively,

of modulus k which is determined by

k 2 4rR
(a - a ')X + (r + R)2

where a' fixes the location of tho vortex ring.

From this expression for the stream function, the velocity components of a single

circular vortex ring are deduced when applying the following relations for the derivatives

of the complete elliptic integrals with respect to the modulus

d(kD) d2E K-D
dk - 'k I 1-k- 2

d (hK) E
dk 1 1-k!

One obtains

dwo . da" R f 2 rD+ (-r) E
-(a-a )+(r+R)21 I -k2 j

_da' R (a-a') JE 21)
dw,- 1[(aa') 2 +- r+R .2 '

dw t =0

Because of the axial symmetry of the problem, both the axial and radial components

ate independent of the angular coordinate, and, further, the tangential component equals

zero.

For a 'ortex cylinder of any circulation distribution, the velocity components follow

from the elementary components of a vortex ring by integration. The result written nondimen.

sionally for an elliptic distribution is:

1o 11 -

0{s 2ff -

ks {1- z) - + 2zDk) dz'

0  1 h21

k 3 f E ( k ) _zD(k) dz'

k'

CONFIDENTIAL
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where x are nondimensional cylindrical coordinates,
z

2

1 is the length of the shroud,

P 4z€k2  is

[ h( z - (1C+ ( I+:)'

(k 12  is 1 -k2 ,

-L is the ratio of length to diameter of the shroud,2R

a- is the variable of integration over the chord length of the shroud, and
1/2

GS is is the nondimensional total circulation of the shroud. This quantity is
positive if the force which is gonertd by a positive v. (in the direction

of positive a) is positive (in the direction of positive r).

The comp!ele elliptic intograls within the velocity components have been expressed

by integrals over a product of the modified first order Bessel functions in a paper by Stewart. 3

For numerical purposes, however, the velocity components as written in Equations [1] and

[2] are found to be more convenient.

Relative to the problem under consideration, the velocity components of interest are

those within the plane normal to the axis through the halfway point of the shroud length,

s - 0, (in which plane rotor and vanss are supposed to be situated) and, further, at the vor-

tex sheet, z - 1.
For the plane g - 0, there is obtained from Equations I1 and [21:

3

(Wa Gs1) X2r If Z) E/?~ M~fl- +2zDW dz'
fo 1 I ks f( s CE-7) I

hJ.,7 ff k , ' - 2 D )dz' -0
~v G 0I -f- (k')

k ( 2 
4z

(h z)2 + (+ Z)2

r11M UI
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The radial component in this plane becomes zero since the integrand is an odd func-
tion of s'.

At the axis, z - 0, the initgrand for wa can be expressed by known functions.
One obtains

vo GS /80 ir2 1~J0

A

At stations z which are different from zero, the integral for wa can only be evaluated
by numerical calculations. The results of these calculations over a range of A are represent-

ed on Figure 2. From this figure it follows that the velocity distribution within the middle

plane becomes uniform for shrouds of a length greater than about twice the diameter. For
shorter shrouds, the axial velocity becomes increasingly less uniform the shorter the shroud
is, the velocity incre.sing from the axis towards the wal! of the shroud.

It should be mentioned that different notations for the same velocity component are
used in this report. For instance, the afore-deduced velocity component (w.) Z 0 is the

IIIIL ) I-i, -/

tt i _1!.4

S".0 75
•(z) -O.SI e, 1 -,- ,.,. - -

() -0.4
he 1.5

h 2.0 a_ .-

L _ he 2.5

-A0 0.2 0.4 0.6 0.0 1.0

X

Figure 1 Figure 2 -Velocity Field of the Shroud in
the Plane a - 0

Uldddle plane nowal to the ies.
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component induced at the plane a - 0, i.e.,lat the disk frt-m the shroud. In the application
of this work, a notation with two indices is found more convenient. The first index fixing

the plane of reference and the second one the component of the system by which the respec-

tive velocity component is generated. Correspondingly, the velocity component (wa)3.zo is

denoted on the diagrams and later on in this report by (wa)D.s Analogously, fafo)SS denoteu
the self.induction of the shroud,{tW.)SD the axial component induced at the shroud from the

disk, and so on.

The self-induction of the shroud follows from Equations [1] and [2] with x 1

Ek kT~lzV k3 D(k) d( z'- z)

1oGs) 1 r z- . ---V .

(! - -- _Z)V _- 13D(k) - 2D(k)}dz
k 2 = 4 Z

k=[h(z-z') l +4

Both of these integrals become improper integrals when a' approaches a. In this case,

k approaches 1, k' approaches zero, and K approaches infinity as nat log [1/(s - za)]. With
respect to the integral for to, the transformation (x'- a) - l' is introduced. Then the product

(K t* - 1) approachei zero when a' approches a provided that n > 1.
Correspondingly, n = 3 is chosen for the numerical evaluation of the integral in order

to have real values of 9 for negative quantities (a'- a); it follows that

Y/ -- , OD DM t2 d t

The results of the numerical evaluation are represented in Figure 8. The curves are
symmetrical about a -0.

Relative to w., the integra

HI . J(' 2 -z) '2 k 3R(k) dz"J-1! ( k 5)2

is considered first; the integrand oecomes indefinite of form 0/0 when a' approaches a.

Replacing (k') 2 by (1 - k2 ) gives

,= 2F.D- dz'+ ,(z'-z) I-Z 2 k' E dz"

CONFIDENTIAL
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-03, -

-1.0 -"as -46 -a*4 -04 0
l+

T

Figure 3 -Self-Induction of the Shroud
AxLIa Coa'onseM

The first of thece two integrals is an improper integral. To determine its principal
value, we introduce a'- cos o, da'- - sin odrp, s con jo and resolve the numerator

(Vfja 1 Ek3 sint) within thp' interval, tp's- r to to'- 0, which corresponds to the interval

a -1 to x - + 1, into a Fourier-series

O1z E sn q= kEamn'toe-1'=Za,Cos sto

Then it follows that

E d Zia lj o iL a r s n n ra s i nl n~

With this expression, there is obtained

Within the integral, the product k'(z'- a) approaches zero when a' aWProaches 7; thus
the integral can be evaluated numerically without difficulty. Relative to the first ternm within
the brackets, this term becomes indefinite of form 0/0 at the end points of the interval
a 0 1 and a - + L. From l'llospital's rule it follows that

CONFIDENTIAL
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fora= +1: ) ( 'af+f 2 . .. dz'}
Z=~

The numerical results as obtained by means of Fourier-expansions consisting f six

terms a. are represented on Figure 4. Since the radial component is an odd function of a,
it is represented only for an interval of a from - 1 to 0.

It should be mentioned that the main difference between a ring-shapod and a flat wing

lies in the axial component of the self-induced flow. This component is zero in the case of

a flat wing and arises from the lateral parts of the ring for a ring-shaped wing.

The velocity which is induced at the shaft sink from the shroud is determined approxi-

mateol by assuming the total circulation of thu shroud I' s concontcatod in a -in~gle vortex at
a 0 0. From the stream function of a single circular vortex, one obtains at the shaft sink

with coordinates xzh 0 and a., ash/(/2)

(waI) = - 1 la]

2.2 ThE VELOCITY FIELD OF ROTOR- - - -- -
AND GUIDE VANES

As mentioned previously, the effect .
of rotor and guide vanes on the inflow is

deduced from that of an axisymmetrical sink L 0.5

distribution over the rotor disk. For a disk

of small thickness 8, the volume element _r

amounts to dV = r'(d,') (do) 8. 1 -13

Let q be the strength of the sinks 0.5 --

per unit volume; then the strength of the
volume element becomes de = rld') (do)

(g). Passing to the limit 8 = 0 in such a

way that the "surface density" eO = q8 2z

remains constant, the elementary strength

of the surface element dA =r'(dr*) (do) °-.o  -o.5 0

becomes (eD dA) and induces, at a point 2

with cylindrical coordinates (a, r, 0), the Figure 4 - Self-Induction of the Shroud
velocity element Radial Cornpo;mn

CONFIDENTIAL
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(d 2w) = edA" _ ,,
4rp2  - rdrd

where p is the distance betweon the area element of the disk and the point of reference. If

the area element has coordinates (0, r, (p), it follows that

+2 2 2rin p2 + (r- r*Co )

For the components of (d 2W), there is obtained:

(d 2w). = (d~w) a
P

(d~w)7 = (d w)cos(r~p)=(dw)(-- COS W)

Introduction of the expressions for (d 2tc) and p into those relations and integration

over 0 yield the following result for the velocity field of an annular sink ring, eD being in-

dependent of ip

dwI = 2L 7 dxi h(k) C= dxw" (3

2w:z F~~(x 2 (lAx)+ (X + X) 
2  21x*

dw, = - e, dz" X

2yr z" V(hzf + (X + x)2

{KM- E(k)[- 2 x'(.- z) = e!. dx'w: (4)
h (hz) 2 + (x'- zX) 2rx'

The modulus k of the complete elliptic integrals has the value

r=A7Z+ I X+ __)2

The tangential component is zero because of axial symmetry.

From these expressions, the velocity components of a sink disk follow when integrat-

ing over z'. Since eD may depend on z', there is obtained

wa = f Vea 2 = 7 dz (3a]

W, = - I rJzev dx ' [4a]

where the nondimensional :adius of the hub rP/R is denoted by zjo

Putting .e - I in the expressions for uo and u* gives the velocity components which

CONFIDENTIAL
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j L61.0

I-0.2

0.3 014 05 0.6 *0.7 0.8 0.9 to

Figure 5

are induced at the shroud from the disk. For this case and for A -1.0, the one factor of the
integrands, viz., (w*,/lz)5D and (wjYz)sb' is represented on Figures 5 and 6, respectively.
In these representations, most of the numerical values ot the functions uos and wo, have been
taken from a paper by Kuechemann.4 With respect to the influence of A, the determination of
tho curvos for one value of A is sufficient since ws. and uc*, (rem Equations [31 and [4], re-
spectively, depend merely on the product (A a). That is, for different values of h, the curves
for usand wo shift so that the same or~nate belongs to a different abscissa, which follows
from (A a) -constant.

In order to determine (wa)SjD ?.n (w,)SD, the vtiation of eD over the rndiue must be
known. If eD is independent of z ot can be replaced by a suitable avet age eDP the expres-
sions become



i CONFIDENTIAL

I --Y I

.3 0.4 0.5 0.6 Q7 O6 9 1.0

Fitaure 6

Xi dr 3b

dx' 1 4bl

which can be computed numerically from the quantities on Figures 5 and 6; the result in

given in Figures 7 and 8, respectively, tor a hub radius z, = 0.4 and tar a range at h. with

respect to this latter variable, the curves are related in the same manner as the intogrands.

Relative to the self-induction' ot the sink dis!k, tha axial component at the induced

velacity is of interest because ot its relation to tha thrust. Fram Equation [31, the comlpo-

nent would fallow at each station z from:

(W.) 2 : -- = I; dig

Instead of determining this limit of the integral, there is a mare convenient we.) ot

ascertaining (w. -)z - 0 by representing w. by a series of Lagendre polynomitl F



CONFIDENIAL 14

-1.0 1.- 0.

1.0~

- ~o- -o1of
UIM *f 0.04~i*

03 .0.4 .0. 0.

Figure 8a
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-KV.0
2Ety.=iM4

-2.0--------------------------

-I - f~

I "o, Z / /A 4

VII

-0.0

Figure 8b
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For a sink disk of radius R with cD itssutnid to be indopondent of the radius, the

velocity notontial at any point r< It is represented in sphuocical coordinates r, 0 P by

the series

', (cosJ) is the Logendro polynomial of nth degree. This potential satisfies Laplace's

equation, the boundary conditions being the values of the potential at infinity and at the

axis; the latter is known front a simple integration over the radius of the disk. By comparison,

it is seen that those boundary conditions are identical with those of the gravitation potential

of the disk; the details of this deduction are available in standard textbooks.

From the afore-written series for 0 (which is independent of 0 and, therefore, axi-

symmetrical), the axial velocity component at points arbitrarily near the disk

J H= - e,.e - 0 ) becomes
2

= UP ~ for~t 2 2R [5
4 -0.0

For points of reference for which r > R, the potential is represented by

= _ t +1 R 6

0( ,t) ,2 r 8 r . 6t TP

from which ther,, is obtained for points arbitrarily near the plane of the disk

(0IVA",, = ) for r> R r6l

If eD is independent of the radius, the axial velocity component is constant over the

disk and is zero outside of the disk for points within its plane.

Now compare the velocity field of a sink disk with that of a rotor. At the disk, the

velocity jumps from -(eD)/ 2 to ,(eD)/ 2 ; this follows from the aforo-written velocity poten-

tials. Otherwise, the velocity field of the sink disk is continuous, in particular, with re-
pect to the axial component, it follows from Equation [31 that positive values of a (which

are behind the disk) yield a negative quantity (wtca), FD being a sink density. As compared

to the absolute flow of a propeller, this holds for the velocity field behind the propeller

outside of the slipstream but not within the slipstream. To approximate the slipstream be-

hind the rotor with respect to the am-ial component, it is necessary to superimpose on the

sink flow behind the disk a velocity field of magnitude IJI1 which is in the direction of

positive z. Then the axial velocity component right behind the disk becomes

(Ie'Di - leDI /2) - 17.1/2 which equals the inflow into the disk. Infinitely far behind the
disk, the effect from the sinks is ze.o and the velocity equals IFpI. lience, the axial

velocity of the combined flow behavos like the axial velocity component of a propeller, viz.,

it is continuous at the propeller and infinitely aft it increases to twice the value at the
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pepeller. Further, considering the axial component ii the vicinity of a cylinder of radius

R, the axial component of the absolute flow is continuous when traveling through the cylin.

der in front of the disk but discontinuous behind it. This complies with the properties of

the axial velocity component of a propeller.

Behind the disk, the axial component of the absolute propeller flow jwmps from

[IFDI + w.(+ a)]inside to w,(+ a) outside of the race, and at, the boundary it equals
[eD/ 2 t w.(+ )]. Since wa(+ a) - - tUa(- a) the axial component of the interference velocity

at the shroud from the rotor for positive a expressed in terms of the sink flow becomes

Si a.~,., [3c]

'a(- B)S.D following from Figure 7.
in addition to the axial and radial velocity components, there is also a tangential

velocity field from rotor and guide vanes which is caused by the hub vortices. When rotor

and guide vanes are considered separately and the blades are replaced by lifting lines, the
following conclusions are known from Stokea' Law with respect to the tangential velocity

field of each of the components: The field is zero in front of the lifting lines and is

,nr [7]
-t 4r

at a lifting line, where r is the circulation at one of the lifting lines and n is the number of

blades on rotor or number of vanes. In the flow behind the respective component, the tan-

gential velocity equals twice this value. 2 --

The velocity which is induced at the ",
shaft sink from the sink disk follows from 6 -

Equations [3a] or 13b) when introducing

Leh~* - -h -

/ 2 / 2 2 h ' 1 .
and when adding the (negative) quantity so

obtained to the uniform velocity field Ie1.
(Relative to the position of the shaft sink on

the axis, see Section 2.3.) Zh:O"

When a sink density at the disk which 5.5 0.75

is independent of the radius CD is assumed, 'sh / 4,-
the nondimensional axial component at the Figure 9
shai r sink becomes

2 (w ) s ' 2n - J, 2 7 - d 2" - P1 [3d]
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This function F1 is represented on Figure 9 for a rn.-go of the ratio Ish/( 1/ 2 ), i.e.,
the ratio of the shaft length measutd from z - 0 to tio length of half the shroud, and for

several values of h, X. being chosen 0.4.

23 THE VELOCITY FIELD OF THE SHAFT SINK

The termination of the shaft requires a sink-source dintribution on the axis. When

this distribution is approximately replaced by a single sink, it follows fr-,m well-known

relations, xh - Rh1 R being the nondimonsional radius of the shaft, that

for the strength of the sink ! = R:vrxt ] [8t' Sh

for the position of the sink Z4 H = -'. - - a

These relations hold when the velocity vah is uniform. With the rotor and shroud
working, the difficulty arises that the velocity field within which the shaft is situated is no

longer uniform but aopends on both the radial and axial coordinates. As an approximation,
the sum of the velocity of approach and of the axial components which are induced at the

place of the shaft sink from shroud and rotor will be introduced for ysll

__ ______I[0

(1 0+ 3 2 2~ 2111v
38/h

the function F1 being represented on Figure 9.

This approximation does not satisf) the boundary condition that the normal component

of the flow relative to the shaft is zero. The errors which arise should be checked after-

wards by calculating the normal compone.t of the combined flow on the given shaft contour.

With these re!ations for the shzlt sink, one obtains for the velocity components which
are induced at the shroud from the shaft sink

1 V h( Z - zh)

(uF. -' ( 11-
L'1 I,,.X,2 _ -

So #A,. 4 v'o !1b

sO I [ + h'( z - zhj)Ilb

The foregoing considerations and numerical evaluations give a sufficient knowledge

of the velocity fiole of the shrouded propeller. This velocity field forms the basis for ascer-

taining the force components.
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3. THE FORCES

As mentioned on page 3, the interaction forces result from the mutual interference
velocities between the singularities. The interactions with the shaft sink will be omitted

when determining these forces since these interactions are very small. Furthermore, these

quantities cannot be determined very accurately because of the approximations for the strength

of the sink. (The velocity field of the shaft sink will, however, be taken into account for the
camber line of the shroud since in this case it is essential in order to satisfy the continuity

equation.)

Disregarding the interactions with the shaft sink, the net thrust of the system will be

obtained when the axial force on the shroud is subtracted from the thrust of rotor and guide

vanes.

3.1 THE FORCES ACTING ON THE SHROUD

The axial force on the shroud vortices Ts arises from the radial velocity component
which is induced at the shroud from other e'ngularities present.

In this case, the singularities present are the oinks at the disk (which replace rotor

aend guide vanes) and the hub vortices. Since the direction of the velocity induced from the

latter coincides with the direction of the vortex lines of the shroud, the effect on the force

is zero. Then with the radial component from the sink disk (tc,)S.D, the axial force becomes

Ts,D = 2p R 2 rh  ( dz 112a]

With a positive y(z) [which represents the circulation per unit length over the shroud]
and with an inward radial velocity component from the sink disk, the axial force on the shroud

is directed backwards, i.e., this force represents a resistance.
Introducing for y(s) the elliptical distribution which is assumed in this paper, viz.,

Y (Z) = 1-G o

one obtains for the nondimensional coefficient of the axial force on the shroud which is in.

duced from the disk

(C)t (R_ -) 2 1b

An alternative expression for this force can be deduced when considering the reaction

of the sink disk to the interfereace velocity from the shroud vortices. From the remarks on

page 8, this reaction force is equal to but opposite to that which is caused by the interference

velocity from the sink disk at the shroud vortices and which is expressed by Equation 112a].
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For this reaction force (denoted by T~DS) in terms of quantities of the disk, Lbsj following is

obtained

Tl.;=2pirR "f e,,(X) (c 10I' zdx [213a]

= 
1 2Af lx W) XdX [13b]

I(Cr) ,l=!crb' [14J

Both of the expressions [12b] and [13b] depend on the radia distributiorn of the sinks

over the disk, Equation [13b] in a direct, way and Equation [12b] by (W,)S D which', from
Equation [4a], ia rolated to CD(X). In order to evalu~ate Equattions 112b) and (13b], the distri-

bution eD(Z must be known. In the case that eD is independent of z or can be replaced by

an average WD, the force coefficients can be evaluated once and for all. In this case if fol-

lows that

=O 1L 8 dz Y L~?seJ(12c]

and that

(c) 4 ~ L xC ]dz (13cJ

The factors in brackets are known from Figure 8 and Figure 2, respectively. The representa.

Lion of these expressions on Figure 10 shows that Equation [141 holds within the accuracy

of numerical integration which is liimited by the properties of the intogrands when a approaches

zero and when zr approaches 1. In the first case, the integrand becomes infinite since K be-

comnes infinite as nat log (I/a) which necensitatas, for numerical evaluation, the transforma-

tion a -t" n > 1.

In the following, the absolute value of the function which is defined by Equation (12c]

or (13c] is denoted by F2.
The radial fL~ coM2onAnt on the shroud is determined from the axial velocity compo-

nents which are induced at the shroud. Since this force is normal to the velocity of advance

IVit does not affect the transformation of power input within the shroudod propollor and is,
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I L]ILi__I_.L 1
- -)so Vo 0 - From the Reaction at the Shroud

(IT), + - From the Reaction at the Disk

2-, '0.4

0,5 1.0 1.5 2.0 2.5
h

Figure 10 - Axial Reaction Force Between Shroud and Rotor

therefore, not evaluated. This force is significant, however, for considerations o! the

strength of the shroud.

3.2 THE FORCES ACTING ON THE ROTOR

As mentioned previously, the rotor is replaced by lifting lines in order to determine

the forces at the rotor. Then the total force (including the reaction with the shroud) follows

from Kutta's law, tixking into account the resultant velocit) field at a rotor lifting line.

The tangential velocity component is generated by the hub vortex of the rotor nR FR,

and there are no parts within the tangential component either from the shroud (because ot

axial symmetry of the induced flow) or from the guide vanes (from the law of Stokes if the

vanes are ananged behind the rotor). Then, from Equation [7], for the tangential volocitq

induced at the rotor

4ryr x 27r

With respect to the axial velocit-v component induced at a lifting line of the rotor, this

component results from the shroud vortices and the sinks at the disk; the latter includoq

effects from the lifting lines of the guide vanes. Accordingly
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(w, Jo, + (W)o~ = 2 + (w) 1,s

Within this expression, (Wa)DD follows from Equation E51 and (wa)DS from Figure 2.

It is seon from this diagram that (tW)DS. is a negative quantity when the sense of circula-

tion at the shroud is such that a pressure increase arises within the shroud, i.e., when y

is positive. Then (wa)D.D is of the same direction as v0 but (UWa)D.S is opposite.

With these expressions for the induced velocity components, the force elements at

the rotor become

in axial direction (dT), = p(n,,)[ Wr - (w) U]dr [16]

in tangential direction (dQ),, = (nud)vo+I E:I I dr 1171

Absolute values for the velocity components &to introduced into the latter relation in order

to avoid mistakes in the signs.

3.3 THE FORCES ACTING ON THE GUIDE VANES

Again, from Kutta's law, these forces follow from the velocity components. The

axial velocity component being continuous, it equals the axial component at the rotor

S= (W4)4= r tI - os l

The tangential force component at the vanes which follows from the axial velocity

component is without interest for the propulsion of the system.

The tangential velocity component at the vanes (ws)V is determined from the condition

that the guide vanes cancel the tangential velocity field of the iotor (which, however, is

possible only ith an infinite number of blades.) Behind the rotor, the tangential velocity

equals 2 (w R, and behind the vanes, it equals 2(tw)V. Therefore, to have the resultant

tangential velocity zero in the slipstream, the folloaing must hold

2( wt),, - - 2(w,),

That is, the total circulation at the guide vanes nVP v is equal but opposite to that of the

rotor nR FR, and the circulation of the respective hub vorticbs is equal but opposite. Then,

the tangential component induced at the vanes from the hub vortex of the rotor equals

2(wt), and that from the hub vortex of the vanes -(dR; hence, the resultant tangential

velocity at the vanes equals
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I(w).I = I(wt)R=n = nlGu vo [18]
4rrI x 21r

From the last relation, one obtains for an element of the thrust at the vanes

(dT) v = p(nvv)kwe)vdr [19]

which is in the same directioft az ho, thrust element on the rotor.

3.4 TIlE NET FORCE OF THE SYSTEM AND THE SINK DENSITY At TEtI DISK

With the relations which have been established so far, expressions for both the net

thrust of the system and for the power input can be established.

The daet thrust T equals

T = TU+TV+ I,,

TS, from Equation [12a], being a negative quantity for a positive y'.

Introducing Equations (13c), [151, (161, [181, and (191 gives for the coefficient of thc
net thrust

T -P(R r2) VoA, L 2 [201

2 A V0

the negative sign being necessary when introducing the absolute values leDl and F2 .
An expression for the power input P is deduced from Equation [17] in connection

with Equation [13c1

P 2  [ 1 i- n- ,] 2op (R 2 -  r2&lzlv = , -+ 1 v [211

In order to estnblish an expression for the sink density at the disk, we refer to the

law of momentum which states that the time rate of change of momentum equals the net

thrust of the system. Since the sch.eme which has been constructed for representing the
rotor flow leads to the result that the absolute axial velocity equals te'.I in the final wake,

the change of momentum of the mass per unit time dm equals (i-dm). With

dt= p2rnrdr IVo +(W. ),1 = p2rirdr I VU+1I E1 --z-I(Uwo),, J

the law of momentum yields the relation

T 2py l[ vo + ri LI - J(w.)j,,DN A

CONFIDENTIAL



CONFIDENTIAL 24

In general, e1, will be a function of the radial co..rdinate x. To maintain the simple

scheme of a circula sheet of vortices which is concentrated within the boundary of the rear

jet, it is necessary to introduce an average of eD over the radius. The reason for this is

that a concentrated circi~lar vortex sheet is equivalent to a uniform sink density over the

disk, as mentioned previously. Otherwise, to account for a radially varying sink density,

additional free vortex sheets, i.e., a radially varying circulation at the bound vortices, must

be introduced which complicites the calculations considerably.

The average 7D is determined such that the net thrust from Equation [20], which is

the arithmetic sum of the axial forces on the substituted bound vortices, equals the net

thrust from the law of momentum. This leads to the relation

I~I ~ n~G ~1[22]

3.5 RELATIONS FOR THE CIRCULATION AT ROTOR,
SHROUD, AND GUIDE VANES

When the required net thrust of the system is a given quantity, Equation [20] repre.

sents a relation between cT and the unknowns GR and Gs. The same holds for Equation

[211 when the power input is a given quantity.

A condition for GS is found from the required pressure increase in thu plane of the

rotor Ap - PR - Po. This pressure increase is related to the flow within which the rotor is

located and whose axial component in the plane of the rotor amounts to [vo - 1(W.)D,SI].
The2, it follows from Bernoulli's equation that

£-fl G~ I(± i ]' 1213
P V0 2 L . ]

from which the circulation at the shroud is represented by

P/2 [23b]

Since the induced velocity [(t./zO) (1/Gs)]D $ depends on the radius, the required

pressure increase should be related .o a certain radiv.s.

The loading coefficient CT or Cp and, further, A p/(p/2) 0 , nR , and A are considered

given quantities. Then one obtains the circulation at the shroud Gs from Equation [23b]

COMF DITIAL
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and, with this value for GS, the circulation GR from Equation [201 or [211 together with

[221. The equation for (nR GR) so obtained reads in terms of the thrust coefficient

(jr [(e,1 -)[(Q ) + YFz + e ! -(Cr?-GvF)O (2412 4
2

or in terms of the power coefficient

~ %~-) ,- , Gs M3 " c GFC'-no 2 251

The circulation at the rotor being known, the circulation at the guide vanes equals the
total circulation at the rotor from reasons mentioned previously. Therefore

n v :;tGk (261

4. DESIGN DATA FOR ROTOR, GUIDE VANES, AND SHRObD

4.1 ROTOR

Expressing the lift o an element of a rotor blade by the law of Kutta-Joukowsky and,

on the other hand, by the lift coefficient, and eouating the expressions, the following obtains

01.l), ,= 2 4
VRt

where the resultant relative velocity at the station r of the blade is expressed by

,= [10 +j1- I(W.)0 '1J'+ (, - ,W k 2

Nondimensionally, these expressions read
(CLI)"' .() GR

D ?[27)

VR [2 - G 2

The density eD/v 0 is known from Equation [221, the axial induction flom the shroud

I1(wo/v 0 ) (1/GS)]DSI from Figure 2.
In connection with the last two relations, the directon of the relative velocity by

which the position of the section is fixed foli'ws from the relation (see Figure 11) :
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Cpt d Vft (wt)R

(dT')R, (d v

(dT)ft

(dQ), ot

Figure 11 -Velocity and Force Diagram at a Section of the Riotor

1+1151 -Gsjw4
tan zR " njtGR [281

A 2zrr

Further, in the design of the -otor, its local cavitation number must be known. This
is given by the expression

R dr\
(PR - p wt - P

=(. )oo"- --- .,(, ,).}

229

Uo= -
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where ao is the cavitation number of the undisturbed flow.

Cavitation will not take place on a section of the rotor if

where the term on the right-hand side denotes the *bsolute value of the nondimonsional mini-

mum of the pressure on the section.

By means of these formulas, the design of the rotor follows usual procedure, viz., to

determine cL and I so that the calculated product (cL 1) is satisfied and that, , .the same

time, the onset of cavitation is avoided. This requires knowledge of both lift versus angle

of attack curves and pressure distribution curves of sections in cascade. On the other hand,

the knowledge of two-dimensional cascade effects on the sections is sufficient for this prob-

lem since the flow at the rotor for a constant circulation is essentially two-dimensional (in

contrast to the unshroudod propeller where the flow is essentiall three-dimensional).

4.2 GUIDE VANES

Analogously as for the rotor, there is obtained

(ctr=2 17
" =-.r,,.

t. - ,, . VK.

since the condition of Equation (261 must be true in order to cancel the tangential velk.it)

field of the rotor by means of the vanes. In this flow condition, the resultant relative veloc-

ity at the vanes VP is expressed by

V [-,o (+,),2

Nondimensionally, the last two relations become

S= 2 k (".-)G

21l'0 i  I ;, + ( )2 [301

The angle 31, of the resultant relative velocity at the vanes with the plane of the

rotor is determined from the following equation (see Figure 12)

t:in,8. = .emz :+-I-G.I ;" "), . [31]
nR GR
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Y V 
dT dTt), 1

.4.

Figure 12 - Velocity and Force Diagram rt a Section of the Guide Vanes

For the local cvitation number at the vanes, the following obtains

C 2 dr

- (jV 2 22]

if the approximation Pv - PR is applied.

4.3 SHROUD

In accordance with thin airfoil theory, the shroud section is considered to consist

of an infinitely thin,camber line section (which produces circulation) and of a superimposed

thickness form, the combined effect of which on the velocity distribution is obtained when

adding the individual effects. In the following treatment, the shape of the camber line and

its position relative to the undisturbed flow, i.e., its geometric angle of attack, are first de.

termined so that an elliptic distribution of circulation is realized on the shroud, and then a

thickness function in axisymmetrical flow is considered.

The shape of the camber line follows from the boundary condition that the velocity

vector at the camber line is tangent to this line, i.e., that this line represents a streamline

of the flow. The flow at the camber line is a result of the velocity of approach, the self.

induction of the shroud, and the inductiois from both the sink disk and the shaft sink. Con.

sequently, the axial component of the resultant flow amounts to

Vo + (W)s,S + (W-)SD + (U-).S,,h

€OHIOM TI
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and the radial componot to
( ' .( td ',),I, + ( 11,):., h

The camber line, with coordinates a and (r - iR), is a streamline if

dr () + (w) .+ ').,,

d1 7 0 + ( + (,;,):, + ( M)S,. 0

In this relation, the inductlon from the shaft sink has boon allowed for in order to have the

continuity equation satisfied.

introducing the nondimensional coordinates

r-kt _ a
and z=

gives a first-order differential equation for the shape of the camber line Y " y( z )

dy - . , +s [331

V" G ' IT P(--Ir A, L i ,, , .0

in which relation the terms am determined by the equations or diagrams as listed in the table

on page 30. The table also indicates the sign of the respective velocity components for a

positive circulation at the shroud tnd for a sink density at the disk.

From Equations [3] and [4], the integrands uf both (w,)S.O and (-,)SDO become in-

finite for x - 1 when z becomes zero, i.e., when the point of reference coincides with the

edge of the sink disk. These infinities arise from the assumption that the vortices of the

shroud are situated on the disk cylinder instead of being arranged on the camber line. This

means that in the neighborhood of z - 0, the finite distance d/2 between camber line and

disk cylinder should be taken into account although it can be neglected outside of a certain

interval around z = 0. For this reason, the induction at the shroud from the disk as repre-

sented on Figures 7 and 8 can be considered accurate in an interval of z between - 1 and

z about ± 0.2, the last figure being obtained from comparative calculations of the velocity

components at lines r - R + d/2 and r = ft.

bb .;een z - +0.2 and z = -0.2, the induced velocit) components as represented on

Figuies 7 and 8 are exaggerated. With respect to the integrand of Equation [33] which

must be known within the entire interval from a - 1 to z + 1, a close rpproximation is

obtained when reading off (it,) 5 1 ) between z -0.2 and z - 0 on the dotted carves of Fig-

ure 8. For these dotted curves, the radial distance of the points of roforena. equals

(it + d/2), i.e., x = 1 + (d/l)A; these poit t are ver close to the cambor line around a . 0.
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Velocity Component Sign for
_________________ -81 +8

(VOGr1) Figure 4 +

2jr Figure 8
eD Figure 8a

1WA Equations 110]
Vv. Is . 0 and (lib]

(W'' )8. Figure 8

2mr Figure ',
(Wo)S, 1) Equation 3] + (Figuze 7) + (Equation

(3c)

v.).. Equaticns [101
V'., h and Ell) + when I<h - when a

To allow for the influence of the thickness of the shroud, the calculations have been made
for d/l - 0.04 and dl - 0.06 (Figue 8); these curves are so reated that equal coordinates

are obtained for equal quantities (d/1)A.

For (wl)SD,, this component equals zer at the point with coordinates s - 0 and

z - 1 + (dll)A. Since this component occurs within a sum, together with the relatively great.

er number 1, it is sufficiently accurate to intpolate this sum between s - -0.2 and x - +0.2

from the known values at s -0.2 and a - +0.2.

In this way, a closer approximation to the velocity field at the camber line of the

shroud Is obtained than by replacing the sink disk by a point disk at the axis, the strength

of which in such that the sink disk and the point sink are acted on by an equal interaction

force from the shroud. This approximation has been proposed by Horn for the purpose of de-

termining the circulation at a Kort nozzle. 5 The two velocity fields, however, differ greatly

in the vicinity of the shroud and become sufficiently coincident only at a great distance from

the disk.

The integration of Equation (33] requires the determination of an integration constant

from tho given ordinate of the camber line at an arbitrary station a. Correspondive to the

geometric configuration of the propulsion system, this constant is chosen so that y - d/2

for x - 0. With this, a first approximation for the shape and for the geometric angle of attack
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of the camber Line is obtained when integrating Equation [331 by numerical methods. A sec-

ond approximation follows when arranging the vortices of the shroud on the first approxima-

tion for the camber lino and when calculating the velocit components which occur in Equa.

tion [331 on tbe camber line instead of on the rotor cylinder. The previously mentioned

tables by Kuechemann are very useful for this purpose.4 The velocity components which

are induced at the first approximation of the shroud, both from the sink disk and from the

shroud itself, can be ascertained within a reasonable amount of timc hy applying these tables.

The maximum velocity (or the minimum pressure) on the shroud must be known in order

to determine te cavitation number of the shroud. Following the procedure with thin airfoils,

a close appro'iimation to the volocity distribution on the shroud is obtained when adding the

velocitiete on the infinitely thin camber line section and those on the thickness shape. An

additional velocity distribution associated with angle of attack need not be considered since
the shroud is tupposd to work in the shock-free flow condition.

By definition, the thickness form produces no lift at zero anglo of attack. Therefore,

in two-dimensioral flow, it is symmetrical about the direction of the undisturbed velocity.

For the same reason, the velocity field of the thickness shape can be represented by a suit.

able sink-source distribution on the axis of sninietr) of the section. This method is also

applicable to the thickness function of a ring-shaped h)drofoil (in contrast to the method of

conformal mapping which is resActud to two-dimensional flow). I uochemann has investi-

gated the effect of axial symmetry in this way, "suming ring-shaped sink-source distribu-

tions by which, in the case o two-dimensional flow, s.%mmotrical Joukowsky profiles are

generated. 6 In the axisymmetrical case, the generated annular sections are no longer sym-

metrical about the direction of the undisturbed flow but have a curved middle line; the camber

increases when the ratio of thickness to chstd-longth d/l increases. The influence on the

pressure distribution is shown by Kuechemann on annular half-bodies (which are generated

by a ring source within the undistuabod flow) from which it follows that the pressure distri-

bution on the body is no longer symmetrical in a meridian piano but the peak of suction is

greater inside than outside, the asymmetry increasing with thickness.

It follows from those investigations that when taking a thicknoss form whose pressure

distribution is known in two-dimensional flow (e.g., one of the NACA basic thickness forms),

we t-annot rely immediately on the two-dimensional pressure distribution in axisymmotrical

flow. In order to ascertain the difference of the pressure distribution for the same section in

these two cases, it has been attempted, by mouns of Equations [3J and [4], to determine a

distribution of ring-shaped sinke =ad sources on the axis so that the thickness form becomes
a streamline. In the analogous two-dimensional problem, the sink-sourco distribution follows

from an integral equation. In the case of axial symmetry, it has not been possible yet to

establish the corresponding integral equation because of complications wnich arise from the
exiressions (3] and [41.

Although present knowledge does not permit comparison of sections of equal shape
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in the two flow conditions, an idea of the order of magnit.do of the influence of axial sym-

metry is obtained when comparing sections of equal sink-source distribution. Since the in-

fluence on botl the shape and the pressure distribution increases with increasing thickness,
it is of interest to know whether or not a thickness can be detemnined below which those in-
fluences are so small that they can be neglected. Taking the afore-mentioned sink-sourcto

distributions wL.ch, in the two-dimensional case, lead to symmetrical Joukowsky profiles,

the results are as follows: Below d/l about 0.08, the differences in pressure distribution as

compared with the two-dimensional section of equal thickness chord-length ratio are negli-

gibly small in the range of h investigated (0.7 to 2.1). Further, within this range of d/i and

A, the deformation of the contour is allowed fo, with sufficiont acc racy by a curvature of the

middle line of the section without appreciable change of the ordinates, the latter being re-

ferred to the middle line. The curvature is small and in the interval investigated, it depends

linearly on d/l, increasing slightly when h increases (Figure 13).

0.02 .

II'-i, 0.0 2."70.

0 0.05 0.10

Figure 13 - Camber of Thickness-Forms in Axisymmetrical Flow

It is concluded from these calculations that the two.dimensionl pressure distribution

of a thin thickness form (d11 being not greater than about 0.08) can be applied for axisymme-

trical flow if the thickness form is given a slight curvature corresponding to Figure 13.
An expression for the minimum pressure on the shroud can be deduced on this basis.

Within the assumptions of linearized thin airfoil theory, the velocity at any point of the

shroud is the sum of the velocities from !he circulation distribution on the camber line and

from the thickness form: V - Vs  VT .

The latter is assumed to be known, e.g., from one of the NACA thickness forms; the

former is the velocity just outside or inside of the camber line, i.e., just outside or inside

of the vortex sheet. Let w0 be the velocity at a point of the outside surface with axial

coordinate z, and tci the velocity at a point of the inside surface with the same axial coor-

dinate. Then
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too- WI = V

where y is the circulation per unit length at a. Further, just on the outside of the vortex
cylinder, the relation

, Sheet + ,

holds, and just on the inside at a point of equal z

v: = "Sheet- V'

where w' is the inc:emet of velocity as compared to the velocity within the vortex sheet at

equal a. From those relations, it follows for the unknown velocity W"

W - W - IVo . 2

Then, at a pc t on the outside of the camber line where, with a positive y, the smallest
pressures o- ,bund, the following obtains

w,1 __I l+eII(W 21r 2 G ,coa]'

[341
wl_\ + 1 ,,,2,r 2 _ ,

The angle a is the declination of the camber line with respect to the z-axis which is small.

Relative to the values of (tL,)SD and of (u,)SD in the interval of a between a = -0.2
and a - +0.2, see the explanation given in connction with Equation (33].

The velocity distribution VT/vo is known for the thickness form. Then the maximum

of the velociy at a shroud of finite but small thickness becomes

In order to avoid the onset of cavitation on the shroud, the following relation must be satis-
fied for the cavitation number of the oncoming flow

-l0- " . (V) [34a]

r/2mZM -v,
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5. INFLUENCE OF VISCOUS FLOW ON THE FORCES AND ON THE EFFICIENCY

From Figure 11, it follows for the rotor when the respective forces in viscous flow are

denoted by a prime

(dT)n (dT)R - (dD)n sin 61 = (dT)ft - eft(dL)ft sinl,8k

=(dT)ft- Evj(d- s t (dT) e anjR

(dQ) 11' =(dQ)u + (dD)ft coeif = (dQ)ft ( an + l

WAithin these expressions, (R is the drag-lift ratio at the section of the rotor under considera-

tion.

Analogously, one obtains from Figure 12 for a section of the guide vanes

(dT); = (dT)v - (dD)&, in,8v = (dT)v ( 1- e;. tan.8j)

At the shroud, the viscous drag of the shroud and the (nonviscous) interaction forces are in
the same direction when y is a positive quantity. In this case, the total drag of the shroud

becomes

Ts'' TS +Ds

or, nondimensionally,

if (CD)S I as usual, i s referred to the surface of the shroud 2B a 1.
The fo.-ces on rotor and vanes can be integrated when it is assumed that the drag-lift

coefficients are independent of the radius. Introducing relations [16). [171. and [19] for die
nonviscous parts of the forces, and relations [281 and [311 for the angles, one obtains

-~~ ~ ERa 4 ___ r'( ' ld,] [351
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kr;),, = (cr ,, - fvEG (I!I' ) -x,)-q + , -.),.[37
= . r I 1~ 4 - xh 2h I( i) I

It follows for the coefficient of the net thrust c' that

; = (cr) + (cr)V - (cT)s = c. - t(, + ft) 4 1 (!'2

xj71GJ,1i- Ix- c,) ~ [38]
-x

.,. Q. I ,I\, X. 2

With these expressions for ci and c;, the efficiency of the system becomes

?C = 7t 17

where the ideal efficiency V, is obtained when the expressions [201 and [211 for c7. and Cp

are introduced

l...rA G, F
CT 2 )1,, Gk 1

0
1 [17, =-- -- --- - [391

2 1o Ps 2-

For Gs - 0 (unshrouded propeller), this expression for qv equals that from simple momentum

theory. This is necessary because of the assumptions that the guide vaneR cancel the tan-
gential velocity field entirely and that the circulation is independent of the radius; these

are just the assumptions of simple momerpum theory.

For the reduction of the ideal efficiency due to drag, one obtains
(t-Iet1n11G ,+(ek+ er.)"ft'[(i + ,!!o,, 1-- +) oJ (-"' Iz]+ (c,,. "/

1-2 , (.GR , + (~ i)

£+ Ell T_ [401

Assuming the conditions of an unashrouded propeller without guide vanes, viz.,
GS = 0, (cO)- 0, - 0 and, further, putting x., 0, it follows from the last relation that

'I'1 -- el 2 vol;(+__
l3 + 51) R+ I-"'
2(

f'f4MffiTi Al
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The third term in the denominator is small compart.d to 1 and can be neglected.
Further,

A(14-"1 +

Then, from the above expression, the well-known approximate formula -r , of an unshrouded
propeller which has been deduced by von Kdrmfin and Bienen is obtain% -i:

I+ -2 fk

3 'k2
It is difficult to draw genert. aions fron. the relations for the efficiencies. For

a special case, viz., that for the low-speed pumpjet for DD 710, Mordel 3246, the following
design data are given

c;= 1.08, A= 0.45, 'P !=0.3,h=1.2P'2

By means of successive approximations as described in section 7 of this report, the follow-
ing obtains

e L-¢ 0.028, et, 0.022

For determining these drag-lift coefficients, the drag coefficients (cD)R - 0.010 and
(CA, = 0.024 have been introduced, corresponding to the respective R.Hnolds numbers and
angles of attack. The latter figure is greater thn the former since the sections of the vanes
work at a great lift coefficient with which a groat pressure resistance is cornected. In addi-
tion, the Reynolds number of the sections of the vanes is smaller than that of the rotor;, be-
cause of this, the frictional coefficient becomins greater.

Assuming (CD)S - 0.013 (which figure, however, is uncertain) and using Equations

139] and (401, the following values are derived

171= 0.808, iy, = 0.841, ,/ 0.679

From model tests, q has been determined as 0.656. Further, a value of 0.77 is obtained
from these calculations for the ratio of the net thrust to the thrust at the rotor and a value

of 0.725 from the model tests. These differences between calculations and test results may
arise from the uncertainty of (cD)S which probably is greater than assumed because of sep.

aration which arises from the shape of the shroud and from the pressure increase at the
rot.
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6. INFLUENCE OF A FINITE NUMBE. OF BLADES

The scheme which has huen introduced for the action of the rotor has bgen chosen as

simple as possible, viz., constant circulation along the lifting lines, a hub vortex of the

combined strength of the lifting lines, and a system of vortices within the boundary of the

rear jet. Furthermore, it has been assumed that the number of blades is infinite. In this

section, the last assumption will not be made but the velocity components which are induced

at a lifting line by nR helical tip vortices together with a straight hub vortex of strength

(nR rR) will be considered.
Without going into details of the deduction (e.g., see Kawada 7 ), it is stated that the

ratio of both the tangential and axial velocity components at a lifting line for a finite number

of blades to the respective quantity for an infinite number of blades is expressed by the

following relation

where

Yi= 2 ,L,,( -2L) K 3 ,, tanfik-" m I

Within these expressions, Lan 13R 13 the pitc. uib of the tip vortices, I and K are the

modified Bessel functions of the first and sect :,A kind, respectively, and the prime indicates

the derivative with respect to thL argument W*%.,, ar)ing the number of blades, it is assumed

that both the total circulation (nR PR) and the pitch angle O3R are kept constant. This im-

plies that the loading coefficient varies when the number ot blades is varied.

The sum S depends on the pitch angle 16R and on the numher of blades nR. For

R - 5, the quantity i5 which is elated to S by

I, I tdan $,.

2 X- L "

is represented on Figure 14. This quantity i, is denoted wi the "induction factor." Then,

the ratio of the velocity ,.omponents becomes in terns of the induction factor

.!!t . , , t X
two) i. bt I - X

B4 the i, t of single tip ,,ortire , tLe isit. ctd it.%, eI components are exaggerated

near the tip since, -iitun , - 1, both w, and u , Loconic infinite. Be)ond a certain distance

from the tip, however, this forn,ula is suitable fur obtaining an order of magnitude for the

influence of a finite numbui .J 1l,4ds. For 6,, 33 iogtoc.C-, c.g., the right-hand side be-

cudnlos L.U2t) at C. - t,. ........ it. h.- in .... p.... ! . ,....urLtng in practice, the

ififluv:e v- A a fi Io flu... 1:1,le. a • tf ,a-.'a't,. . Tli. huh for i e
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Figure 11

assumption that the circulation at the lifting lines is independent of the radius but is differ.

ent when the circulation distribution depends on the number of blades (as it does with an un.

shrouded optimum propeller).

The same considerations are applicable for guide vanes with a finite number of blades.

The influence of the number of blades on the induced velocity component is greater for the

guide vanes than for the rotor since #v > PR. The induction factor increases when j3 increas.

es, hence the factor is somewhat greater for the guide vanes than for the rotor. For 1SR= 33

degrees and A - 0.45, e.g., 3V becomes 56 degrees, with which quantity the correction to the

velocity components from an infinite number of blades is 1.028 for n; - 6 and * 0.6. When

the number of blades is increased, the percent correction decreases fairly rapidly, rolghly

to half its valus when one blade is added (e.g., to 1.016 for nV - 7).
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7. METHOD OF DESIGN

The method of design of a shrouded unit from the foregoing considorations is analo-
.pus to that of the application of the usual propeller theory for design purposes.

The given quantities are loading coefficient c'.or Op'), -advance coefficient A, pressure
increase at the rotor pR'po, -and the cavitation number of the oncoming flow
a, po - P*) / v. When a value of A = 1/2R is chosen, the circulation at the shroud,
required, in order to realize the pressure increase oecomes known from Equation (23b] and
Figure 2.

1 p

GS 1 [23b]

The quntity ,',p/(p/2)i2 is related to pR/po and ao by

p = o.'po
P 2 R

The next step is to determine the loading coefficient of the system when operating in
nonviscous flow, this requires the determination of the drag-lift coefficients of the compo-
nents of the system. This problem can be solved by successive approximations when putting
in a first step, c - c,. (with the power coefficient given, the method is entirely analogous).
Then, the circulation at the rotor follows from Equation 1241

(L GR) 2  (SGa)__ 2__ S
V k I V -k/2 ()+ (c-2Gs +) 2=O

F2 is known from Figure 10 as a function of A.
Putting c' - C, a first approximation is obtained for (nR GR) with which a first

approximation for the sink density follows

le. V/+1 jJ - 1 1221

At this point, a check in made as to whether or not the quantity A chosen together
with the given quantities are consistent with a cavitation-free flow on the shroud. The
condition for this is that

0 - (34u)I
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where

max V0  V0 m

and where
v(1 2 

_ I + G C I2-I) +oG h , 1, O [+SVo SJ .V's .,,, ,,,
(34]

G.. (d- - 1 C2I sin 'X-.
VO ZG. , S 2wv 0  el).,, I hr

(Relative to (w.)SD, see the discussion on page 17 for positive values of a.)
In Equation [34a), the cavitation Pumbr of the oncoming flow o is a given quantity.

Further, VT/y 0 is known if a certain thickness form of the shroud is selected. Within Equa-
tion (34], Gs and ICDi have already been determined and the velocit) functions are known;
see the table on page 30. In these first stepb, the declination of the camber line a is

assume] zero.
If the value of A selected does not satisfy Equation [34a], a greater length of the

shroud, i.e., a greater A, is chosen and the calculations are repeated.
Assuming that the A satisfies the cavitation condition of Equation [34a], first approxi-

mations of the cavitation number on both the rotor and the guide vanes are obtained from

p 2 _,/,, , . ,(If- )]t
_&k~)2(2 ) [29]

and from

where

-') = [+ ,o, ' ., +[ nft : (271
VO2 o *V0 GS X 2 izJ

and where

(V 1 N F. 1S 2( 0
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In these first approximations, both OR and v are caiculattd 011k ,,.d
x - 0.7, which is sufficient for determining the drag-lift coefficients.

The maximum values of the lift coofficients which are permissiblc from t( point of

view of onset of cavitaticn on both the rotor and the guide vanes follow from thee cavitat'on

numbers together with diagrams on the critical ca itation number or on the minimum presure
of a family of suitable sections. In orde o obtain approximations for the drag-liRL coefficients,

the drag coefficients (CD) and (CD)V must bo known for the typo of sections chosen. A

reasonable first assumption for the rotor is cD " 0.008. For the vanes, cD is obtained as
the sum of the frictional coefficient and the pressure drag coefficient, the lattrr depending on

the angle of.attack which is usually great at the vanes. At the shrouz, the drag coefficient

(CD)S may be greater than the frictional coefficient, in spite of the sihock-free flow, as a
consequence of separation inside of the shroud which arises from ifs action as a diffuser

and from the action of the rotor. No information on this effect could be found in the literature.

Measurements on the drag coefficient of annular-shaped wings are restricted to accelerated

flow, i.e., the nozzles, in this case and for a thickness ratio of the section of about 20per-

cent, a value of 0.015 for cD at Reynolds number 4.10 S has been determined. This figure is

somewhat greater than would be expected for a two-dimensional wing or equal section.
The drag-lift coefficients of the components of the system being known approximately,

the loading coefficient of the system in nonviscous ftow cT follows from

1(301

4h
+ (c,,)S 1- Z

The approximation is repeated in a second step with this value of cT. Subsequent

steps are necessary until the value of c r which results in a certain step does not differ

appreciably from that which was assumed fcw that step.
When cT has been determined in this way, the exact values of GS, GR, "D/vo,

(VR/o) and (Vv/vo) can be ascertained, the last two quantities as functions of the radius

z. Then the products (c, 1) at both rotor and vanes follow as functions of z from

___=2 (~)GR [271

D

and from

(CD 2 f (IG 30)
D = 30
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Further, at each radius, the cavitation numbers R ad o become known from Equa-

tions [291 and [32), respectively. With the aid of the afore-mentioned diagrams for critical

cavitation numbers of families of sections (which should include the two-dimensional cas-

cade effect), the products (c. 1) aro so split up into their factors cL and I that cL equals or

becomes smaller than that lift coefficient for the respective local cavitation number which

is permissible relative to the onset of cavitation. With this lift coefficient, the angle of

attack of the respective section against the resultant relative velocity is determined when

the lift versus angle of attack curves of the sections, including the cascade effect, are

known. The direction of the resultant relative velocity against the plane of the rotor is cb-

tained for the rotor from

tan [281

and for the guide vanes from

27rX

The design of the shroud requires the integration of Equation 1331 for the determina.

tion of the shape of the camber line and its orientation with respect to the axis. In this

equation, ai quantities ore known from the preceding numerical calculations. The influence

of axisyrnmetrical flow on the pressure distribution of the thickness form is approxiraately

compensated for by an additional camber, from Figure 13, to be superimposed on the shape

which follows from an integration of Equation [33]. At least two steps are necessary for

determining the shape and the geometric angle of attack of the camber line from Equation

(331, viz., arranging the vortices first on the rotor cylinder and, afterwards, on the camber

line. Tables by Kuechemnn in which tUe velocity components fron both vortex and sink

rings have been tabulated are very useful for the second and higher approximations. 8

Finally, the efficiency of the system is obtained from Equations [39] and [40]. In the

latter relation, the drag.lift ratios #R and i V are considered independent of P. In general,

it will be sufficient to introduce th: reapective quantities at z w 0.7 as a suitable average.

8. CONCLUSION

The considerations of this p~por are based on a circulation at the bound vortikes of

the rotor which is independent of the radius. This case represents the optimum with rospect

to efficiency for a shrouded propeller. The flow for circulation distributions which differ

from the optimum can be determined in principle from the effects of the free vortex shout.
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which are a consequence of a radially varying circulation and from their interference with

the shroud vortices. Such problems arise when, e.g., a shrouded unit is given which satis.
fies the optimum circulation in the design condition and when the circulation distributions

of both rotor and shroud are to be determined in an off-design condition. For a finite number

of blades, this problem leads to an integral equation which can only be solved by approxi-
mate methods. The velocity fiela of vortex sheets with an arbitrary pitch distribution must
be known in order to obtain a solution. The necessary numerical quontities of this velocity

field have been ascertained at the lifting lines for a range of blade numbers. The determina-
tion of the induced velocities at the shroud, however, would require a great deal of addition-

al numerical work

In addition to this theoretical work on units with a radially varying circulation, it is
the opinion of the author that the following experimental work is necessary for a further de-
velopment of shrouded propellers:

a. Studies of prezsure distribution, separation, and radial distribution of the inside flo%

of annular-ohaped wings whose flow is cetarued. The available experimental papers 9 10

give information on pressure distribution, but no systematic information could be found either
on the &iag or on the velocity distribution of the inside flow. In addition, the influence of

the shaft on the afore-mentioned quantities should be ascertained.

b. Studies on shrouded propellers with a transparent shroud are needed in order to in-
vestigate the cavitation performance of shroud, rotor, and guide vanes. Such investigations
would be instructive both with regard to predictions from theory and to a judgment of the

performance of the shrouded unit as a noise source in comparison with an unshrouded pro-
peller.
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